Copied to
clipboard

?

G = C42.89D10order 320 = 26·5

89th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.89D10, C10.472- (1+4), C202Q85C2, C4⋊C4.267D10, (C4×Dic10)⋊7C2, C20.6Q83C2, (C2×C10).62C24, (C4×C20).22C22, C22⋊C4.90D10, C4.119(C4○D20), C20.235(C4○D4), (C2×C20).141C23, Dic5.Q84C2, C42⋊C2.12D5, (C22×C4).186D10, C4⋊Dic5.31C22, C22.95(C23×D5), C23.83(C22×D5), C20.48D4.18C2, C23.D5.3C22, (C2×Dic5).21C23, C23.D10.1C2, C2.6(D4.10D10), (C22×C10).132C23, (C22×C20).307C22, C51(C22.35C24), (C4×Dic5).214C22, C10.D4.74C22, (C2×Dic10).237C22, C2.29(C2×C4○D20), C10.27(C2×C4○D4), (C5×C4⋊C4).303C22, (C2×C4).269(C22×D5), (C5×C42⋊C2).13C2, (C5×C22⋊C4).111C22, SmallGroup(320,1190)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.89D10
C1C5C10C2×C10C2×Dic5C2×Dic10C4×Dic10 — C42.89D10
C5C2×C10 — C42.89D10

Subgroups: 542 in 192 conjugacy classes, 95 normal (23 characteristic)
C1, C2, C2 [×2], C2, C4 [×2], C4 [×13], C22, C22 [×3], C5, C2×C4 [×2], C2×C4 [×4], C2×C4 [×10], Q8 [×4], C23, C10, C10 [×2], C10, C42 [×2], C42 [×4], C22⋊C4 [×2], C22⋊C4 [×4], C4⋊C4 [×2], C4⋊C4 [×18], C22×C4, C2×Q8 [×2], Dic5 [×8], C20 [×2], C20 [×5], C2×C10, C2×C10 [×3], C42⋊C2, C4×Q8 [×2], C22⋊Q8 [×2], C42.C2 [×5], C422C2 [×4], C4⋊Q8, Dic10 [×4], C2×Dic5 [×8], C2×C20 [×2], C2×C20 [×4], C2×C20 [×2], C22×C10, C22.35C24, C4×Dic5 [×4], C10.D4 [×12], C4⋊Dic5 [×6], C23.D5 [×4], C4×C20 [×2], C5×C22⋊C4 [×2], C5×C4⋊C4 [×2], C2×Dic10 [×2], C22×C20, C4×Dic10 [×2], C202Q8, C20.6Q8, C23.D10 [×4], Dic5.Q8 [×4], C20.48D4 [×2], C5×C42⋊C2, C42.89D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2- (1+4) [×2], C22×D5 [×7], C22.35C24, C4○D20 [×2], C23×D5, C2×C4○D20, D4.10D10 [×2], C42.89D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=a2, d2=b2, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=a2b, dcd-1=b2c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 16 11 6)(2 17 12 7)(3 18 13 8)(4 19 14 9)(5 20 15 10)(21 85 31 95)(22 86 32 96)(23 87 33 97)(24 88 34 98)(25 89 35 99)(26 90 36 100)(27 91 37 81)(28 92 38 82)(29 93 39 83)(30 94 40 84)(41 159 51 149)(42 160 52 150)(43 141 53 151)(44 142 54 152)(45 143 55 153)(46 144 56 154)(47 145 57 155)(48 146 58 156)(49 147 59 157)(50 148 60 158)(61 76 71 66)(62 77 72 67)(63 78 73 68)(64 79 74 69)(65 80 75 70)(101 106 111 116)(102 107 112 117)(103 108 113 118)(104 109 114 119)(105 110 115 120)(121 126 131 136)(122 127 132 137)(123 128 133 138)(124 129 134 139)(125 130 135 140)
(1 118 63 140)(2 109 64 131)(3 120 65 122)(4 111 66 133)(5 102 67 124)(6 113 68 135)(7 104 69 126)(8 115 70 137)(9 106 71 128)(10 117 72 139)(11 108 73 130)(12 119 74 121)(13 110 75 132)(14 101 76 123)(15 112 77 134)(16 103 78 125)(17 114 79 136)(18 105 80 127)(19 116 61 138)(20 107 62 129)(21 48 100 151)(22 59 81 142)(23 50 82 153)(24 41 83 144)(25 52 84 155)(26 43 85 146)(27 54 86 157)(28 45 87 148)(29 56 88 159)(30 47 89 150)(31 58 90 141)(32 49 91 152)(33 60 92 143)(34 51 93 154)(35 42 94 145)(36 53 95 156)(37 44 96 147)(38 55 97 158)(39 46 98 149)(40 57 99 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 38 63 97)(2 86 64 27)(3 36 65 95)(4 84 66 25)(5 34 67 93)(6 82 68 23)(7 32 69 91)(8 100 70 21)(9 30 71 89)(10 98 72 39)(11 28 73 87)(12 96 74 37)(13 26 75 85)(14 94 76 35)(15 24 77 83)(16 92 78 33)(17 22 79 81)(18 90 80 31)(19 40 61 99)(20 88 62 29)(41 124 144 102)(42 111 145 133)(43 122 146 120)(44 109 147 131)(45 140 148 118)(46 107 149 129)(47 138 150 116)(48 105 151 127)(49 136 152 114)(50 103 153 125)(51 134 154 112)(52 101 155 123)(53 132 156 110)(54 119 157 121)(55 130 158 108)(56 117 159 139)(57 128 160 106)(58 115 141 137)(59 126 142 104)(60 113 143 135)

G:=sub<Sym(160)| (1,16,11,6)(2,17,12,7)(3,18,13,8)(4,19,14,9)(5,20,15,10)(21,85,31,95)(22,86,32,96)(23,87,33,97)(24,88,34,98)(25,89,35,99)(26,90,36,100)(27,91,37,81)(28,92,38,82)(29,93,39,83)(30,94,40,84)(41,159,51,149)(42,160,52,150)(43,141,53,151)(44,142,54,152)(45,143,55,153)(46,144,56,154)(47,145,57,155)(48,146,58,156)(49,147,59,157)(50,148,60,158)(61,76,71,66)(62,77,72,67)(63,78,73,68)(64,79,74,69)(65,80,75,70)(101,106,111,116)(102,107,112,117)(103,108,113,118)(104,109,114,119)(105,110,115,120)(121,126,131,136)(122,127,132,137)(123,128,133,138)(124,129,134,139)(125,130,135,140), (1,118,63,140)(2,109,64,131)(3,120,65,122)(4,111,66,133)(5,102,67,124)(6,113,68,135)(7,104,69,126)(8,115,70,137)(9,106,71,128)(10,117,72,139)(11,108,73,130)(12,119,74,121)(13,110,75,132)(14,101,76,123)(15,112,77,134)(16,103,78,125)(17,114,79,136)(18,105,80,127)(19,116,61,138)(20,107,62,129)(21,48,100,151)(22,59,81,142)(23,50,82,153)(24,41,83,144)(25,52,84,155)(26,43,85,146)(27,54,86,157)(28,45,87,148)(29,56,88,159)(30,47,89,150)(31,58,90,141)(32,49,91,152)(33,60,92,143)(34,51,93,154)(35,42,94,145)(36,53,95,156)(37,44,96,147)(38,55,97,158)(39,46,98,149)(40,57,99,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,38,63,97)(2,86,64,27)(3,36,65,95)(4,84,66,25)(5,34,67,93)(6,82,68,23)(7,32,69,91)(8,100,70,21)(9,30,71,89)(10,98,72,39)(11,28,73,87)(12,96,74,37)(13,26,75,85)(14,94,76,35)(15,24,77,83)(16,92,78,33)(17,22,79,81)(18,90,80,31)(19,40,61,99)(20,88,62,29)(41,124,144,102)(42,111,145,133)(43,122,146,120)(44,109,147,131)(45,140,148,118)(46,107,149,129)(47,138,150,116)(48,105,151,127)(49,136,152,114)(50,103,153,125)(51,134,154,112)(52,101,155,123)(53,132,156,110)(54,119,157,121)(55,130,158,108)(56,117,159,139)(57,128,160,106)(58,115,141,137)(59,126,142,104)(60,113,143,135)>;

G:=Group( (1,16,11,6)(2,17,12,7)(3,18,13,8)(4,19,14,9)(5,20,15,10)(21,85,31,95)(22,86,32,96)(23,87,33,97)(24,88,34,98)(25,89,35,99)(26,90,36,100)(27,91,37,81)(28,92,38,82)(29,93,39,83)(30,94,40,84)(41,159,51,149)(42,160,52,150)(43,141,53,151)(44,142,54,152)(45,143,55,153)(46,144,56,154)(47,145,57,155)(48,146,58,156)(49,147,59,157)(50,148,60,158)(61,76,71,66)(62,77,72,67)(63,78,73,68)(64,79,74,69)(65,80,75,70)(101,106,111,116)(102,107,112,117)(103,108,113,118)(104,109,114,119)(105,110,115,120)(121,126,131,136)(122,127,132,137)(123,128,133,138)(124,129,134,139)(125,130,135,140), (1,118,63,140)(2,109,64,131)(3,120,65,122)(4,111,66,133)(5,102,67,124)(6,113,68,135)(7,104,69,126)(8,115,70,137)(9,106,71,128)(10,117,72,139)(11,108,73,130)(12,119,74,121)(13,110,75,132)(14,101,76,123)(15,112,77,134)(16,103,78,125)(17,114,79,136)(18,105,80,127)(19,116,61,138)(20,107,62,129)(21,48,100,151)(22,59,81,142)(23,50,82,153)(24,41,83,144)(25,52,84,155)(26,43,85,146)(27,54,86,157)(28,45,87,148)(29,56,88,159)(30,47,89,150)(31,58,90,141)(32,49,91,152)(33,60,92,143)(34,51,93,154)(35,42,94,145)(36,53,95,156)(37,44,96,147)(38,55,97,158)(39,46,98,149)(40,57,99,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,38,63,97)(2,86,64,27)(3,36,65,95)(4,84,66,25)(5,34,67,93)(6,82,68,23)(7,32,69,91)(8,100,70,21)(9,30,71,89)(10,98,72,39)(11,28,73,87)(12,96,74,37)(13,26,75,85)(14,94,76,35)(15,24,77,83)(16,92,78,33)(17,22,79,81)(18,90,80,31)(19,40,61,99)(20,88,62,29)(41,124,144,102)(42,111,145,133)(43,122,146,120)(44,109,147,131)(45,140,148,118)(46,107,149,129)(47,138,150,116)(48,105,151,127)(49,136,152,114)(50,103,153,125)(51,134,154,112)(52,101,155,123)(53,132,156,110)(54,119,157,121)(55,130,158,108)(56,117,159,139)(57,128,160,106)(58,115,141,137)(59,126,142,104)(60,113,143,135) );

G=PermutationGroup([(1,16,11,6),(2,17,12,7),(3,18,13,8),(4,19,14,9),(5,20,15,10),(21,85,31,95),(22,86,32,96),(23,87,33,97),(24,88,34,98),(25,89,35,99),(26,90,36,100),(27,91,37,81),(28,92,38,82),(29,93,39,83),(30,94,40,84),(41,159,51,149),(42,160,52,150),(43,141,53,151),(44,142,54,152),(45,143,55,153),(46,144,56,154),(47,145,57,155),(48,146,58,156),(49,147,59,157),(50,148,60,158),(61,76,71,66),(62,77,72,67),(63,78,73,68),(64,79,74,69),(65,80,75,70),(101,106,111,116),(102,107,112,117),(103,108,113,118),(104,109,114,119),(105,110,115,120),(121,126,131,136),(122,127,132,137),(123,128,133,138),(124,129,134,139),(125,130,135,140)], [(1,118,63,140),(2,109,64,131),(3,120,65,122),(4,111,66,133),(5,102,67,124),(6,113,68,135),(7,104,69,126),(8,115,70,137),(9,106,71,128),(10,117,72,139),(11,108,73,130),(12,119,74,121),(13,110,75,132),(14,101,76,123),(15,112,77,134),(16,103,78,125),(17,114,79,136),(18,105,80,127),(19,116,61,138),(20,107,62,129),(21,48,100,151),(22,59,81,142),(23,50,82,153),(24,41,83,144),(25,52,84,155),(26,43,85,146),(27,54,86,157),(28,45,87,148),(29,56,88,159),(30,47,89,150),(31,58,90,141),(32,49,91,152),(33,60,92,143),(34,51,93,154),(35,42,94,145),(36,53,95,156),(37,44,96,147),(38,55,97,158),(39,46,98,149),(40,57,99,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,38,63,97),(2,86,64,27),(3,36,65,95),(4,84,66,25),(5,34,67,93),(6,82,68,23),(7,32,69,91),(8,100,70,21),(9,30,71,89),(10,98,72,39),(11,28,73,87),(12,96,74,37),(13,26,75,85),(14,94,76,35),(15,24,77,83),(16,92,78,33),(17,22,79,81),(18,90,80,31),(19,40,61,99),(20,88,62,29),(41,124,144,102),(42,111,145,133),(43,122,146,120),(44,109,147,131),(45,140,148,118),(46,107,149,129),(47,138,150,116),(48,105,151,127),(49,136,152,114),(50,103,153,125),(51,134,154,112),(52,101,155,123),(53,132,156,110),(54,119,157,121),(55,130,158,108),(56,117,159,139),(57,128,160,106),(58,115,141,137),(59,126,142,104),(60,113,143,135)])

Matrix representation G ⊆ GL6(𝔽41)

100000
010000
0012800
00384000
003563028
0019322211
,
900000
090000
00123107
006301033
002213640
003638815
,
1600000
0230000
00151600
0010800
0035342725
002810532
,
0180000
2500000
006263719
0034201031
001713279
00761729

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,38,35,19,0,0,28,40,6,32,0,0,0,0,30,22,0,0,0,0,28,11],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,6,2,36,0,0,23,30,21,38,0,0,10,10,36,8,0,0,7,33,40,15],[16,0,0,0,0,0,0,23,0,0,0,0,0,0,15,10,35,28,0,0,16,8,34,10,0,0,0,0,27,5,0,0,0,0,25,32],[0,25,0,0,0,0,18,0,0,0,0,0,0,0,6,34,17,7,0,0,26,20,13,6,0,0,37,10,27,17,0,0,19,31,9,29] >;

62 conjugacy classes

class 1 2A2B2C2D4A···4F4G4H4I4J···4Q5A5B10A···10F10G10H10I10J20A···20H20I···20AB
order122224···44444···45510···101010101020···2020···20
size111142···244420···20222···244442···24···4

62 irreducible representations

dim11111111222222244
type+++++++++++++--
imageC1C2C2C2C2C2C2C2D5C4○D4D10D10D10D10C4○D202- (1+4)D4.10D10
kernelC42.89D10C4×Dic10C202Q8C20.6Q8C23.D10Dic5.Q8C20.48D4C5×C42⋊C2C42⋊C2C20C42C22⋊C4C4⋊C4C22×C4C4C10C2
# reps121144212444421628

In GAP, Magma, Sage, TeX

C_4^2._{89}D_{10}
% in TeX

G:=Group("C4^2.89D10");
// GroupNames label

G:=SmallGroup(320,1190);
// by ID

G=gap.SmallGroup(320,1190);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,477,232,100,675,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=a^2,d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=b^2*c^9>;
// generators/relations

׿
×
𝔽